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Abstract. We calculate, for the first time, the state-dependent pairing gap of a finite nucleus (120Sn)
diagonalizing the bare nucleon-nucleon potential (Argonne v14) in a Hartree-Fock basis (with effective
k-mass mk ≈ 0.7m), within the framework of the generalized Bogoliubov-Valatin approximation including
scattering states up to 800 MeV above the Fermi energy to achieve convergence. The resulting gap accounts
for about half of the experimental gap. The combined effect of the bare nucleon-nucleon potential and of
the induced pairing interaction arising from the exchange of low-lying surface vibrations between nucleons
moving in time-reversal states close to the Fermi energy accounts for the experimental gap.

PACS. 21.30.Fe Forces in hadronic systems and effective interactions – 21.60.Jz Hartree-Fock and random-
phase approximations – 21.60.-n Nuclear structure models and methods – 27.60.+j 90 ≤ A ≤ 149

At the basis of the theory of superconductivity pro-
posed by Bardeen, Cooper and Schrieffer [1], one finds the
concept of Cooper pair. This concept finds its origin in the
solution of the problem, first studied by Cooper [2], of a
pair of electrons interacting above a noninteracting Fermi
sea of electrons. Thus, all but two of the electrons are
assumed to be noninteracting. The background electrons
enter the total problem only through the Pauli principle by
blocking states below the Fermi surface from participating
in the remaining two-particle problem. Cooper found that
a bound state exists for arbitrarily weak coupling so long
as the electron-electron potential is attractive near the
Fermi surface. In the BCS wave function describing the
ground state of the superconductor, pairs greatly overlap
with each other in space, and it is the strong pair-pair cor-
relations, in addition to the correlation between mates of
a pair, which are ultimately responsible for the presence
of an energy gap in the excitation spectrum of the super-
conductor. The apparent lack of dc electrical resistance,
that is the existence of a critical temperature Tc below
which metals superconduct, was first observed in 1911 [3].
It was not until almost four decades later that the basic
forces responsible for the condensation were recognized [4]:
the effective interaction between electrons arises from the
exchange of crystal lattice vibrations (phonons). Strong
support for this mechanism was found in the fact that Tc
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is larger for metals made out of lighter isotopes of a given
element. In fact, if lattice vibrations were not important
in the phenomenon of superconductivity there would be
no reason why Tc should change as neutrons are added to
or removed from the nuclei, since their main effect is to
change the mass of the ions.

The nuclear structure exhibits many similarities with
the electron structure of metals. In particular, most nu-
clei with an even number of neutrons and protons different
from magic numbers, display an energy gap between the
ground state and the first intrinsic (noncollective) excita-
tion. The analogy between this gap and that observed in
the excitation of superconducting metals first put forward
by Bohr, Mottelson and Pines [5], led to the study of pair-
ing correlations in nuclei. Following the original sugges-
tion, BCS pairing theory was used to calculate the single-
particle and collective-excitation spectra of atomic nuclei.
The short-range interaction acting in the 1S0 channel be-
tween pairs of nucleons moving in time-reversal states
close to the Fermi energy, and responsible for nuclear con-
densation, has been parametrized in terms of a single con-
stant (G ≈ 25/A MeV, A being the mass number), or in
terms of effective interactions, the so-called Gogny force
being one of the most successful [6]. One-particle trans-
fer reactions measure the energy distribution and occu-
pation number parameters, and reasonable agreement is
obtained between the smeared Fermi surface characteristic
of the pairing theory and these experiments. Two-particle
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Fig. 1. Renormalization processes arising from the particle-
vibration coupling phenomenon. The straight lines indicate
quasiparticles obtained from BCS theory, making use of the
mean-field single-particle states of Sly4 and the nucleon-
nucleon v14 Argonne potential. The wavy lines indicate the
vibrational states.

transfer reactions [7] as well as odd-even mass differ-
ences [8] provide values of the experimental gap. Although
theory is in overall agreement with these experimental
findings, it is not able to account for the marked iso-
topic effects observed throughout the mass table, which
is strongly correlated with the collectivity of the low-lying
collective nuclear vibrations.

In fact, it has been recently found that a consistent
fraction of the pairing gap (about half of it) is due to a
long-range pairing force arising from the exchange of low-
lying collective vibrations. It is this component of the pair-
ing force which provides the correct isotopic dependence of
the nuclear pairing gap [9]. In keeping with these results,
one can posit that a quantitative description of pairing
correlations in nuclei can be attained by correlating pairs
of nucleons through the bare nucleon-nucleon potential
and the exchange of collective surface vibrations [10]. This
is demonstrated in the present paper for the case of typical
superfluid nuclei, namely 119Sn, 120Sn and 121Sn.

The formalism we shall use is based on the Dyson equa-
tion [11]. It can describe on equal footing the dressed one-
particle state ã of an odd nucleon renormalized by the
(collective) response of all the other nucleons (figs. 1(a)-
(d)), the renormalization of the energy �ων (figs. 2(a)-(b))
and of the transition probability B(Eλ) (figs. 2(c)-(f))
of the collective vibrations of the even system where the
number of nucleons remains constant (correlated particle-
hole excitations), and the induced interaction due to the
exchange of collective vibrations between pairs of nucle-
ons [9], moving in time-reversal states close to the Fermi
energy (figs. 1(e)-(g)). We include both self-energy and
vertex correction processes, thus satisfying Ward identities
(cf., e.g., [12]). Within this framework, the self-consistency
existing between the dynamical deformations of the den-
sity and of the potential sustained by “screened” particle-
vibrations coupling vertices leads to renormalization ef-
fects which make finite (stabilize) the collectivity and the
self-interaction of the elementary modes of nuclear exci-
tation, in particular of the low-lying surface vibrational

Fig. 2. Most relevant processes taken into account in the
renormalization of the energy of the phonon (a-b) and of the
associated transition strength (c-f).

modes, providing an accurate description of many seem-
ingly unrelated experimental findings, in terms of very few
(theoretically calculable) parameters, namely: the k-mass
mk [13] and the particle-vibration coupling vertex h(abν),
associated to the process in which a quasiparticle changes
its state of motion from the unperturbed quasiparticle
state a to b, by absorbing or emitting a vibration ν [14].

The Dyson equation describing the renormalization of
a quasiparticle a, due to this variety of couplings is

[(
Ea 0
0 −Ea

)
+

(
Σ11(Ẽa) Σ12(Ẽa)
Σ12(Ẽa) Σ22(Ẽa)

)](
x̃a

ỹa

)
=

Ẽa

(
x̃a

ỹa

)
, (1)

where Σii and Σij , (i �= j) are the normal and abnormal
self-energies. The quantities Ea denote the quasiparticle
energies obtained from a previous diagonalization of the
bare nucleon-nucleon potential within the framework of
the generalized Bogoliubov-Valatin transformation (that
is, the extended BCS calculation, which includes pairs of
particles with different number of nodes in the Cooper
pair wave function).

Equation (1) is to be solved iteratively, and simulta-
neously for all the involved quasiparticle states. At each
iteration step, the original quasiparticle states a with oc-
cupation numbers ua and va and quasiparticle energies Ea,
become fragmented over the different eigenstates ã with
probability ũ2

a+ṽ2
a, while the renormalized occupation fac-

tors are obtained from the components of the eigenvectors,
x̃a and ỹa, according to the relations ũa = x̃aua + ỹava,
ṽa = −ỹaua + x̃ava. The quantities ũa and ṽa are related
to the spectroscopic factors measured in one-nucleon strip-
ping and pick-up reactions, respectively. One can also de-
fine [11,12] a renormalized state-dependent pairing gap,
through the relation ∆̃a = 2Ẽaũaṽa/(ũ2

a + ṽ2
a), which in

the limit of no fragmentation reduces to the usual BCS
expression [15].
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Fig. 3. The spectra of the lowest quasiparticle states in 120Sn
calculated using Hartree-Fock theory, BCS with the Argonne
v14 potential, and after renormalization, are compared to the
experimental levels in the odd neighbouring nuclei 119Sn and
121Sn.

Fig. 4. The state-dependent pairing gap for the levels close to
the Fermi energy obtained using BCS theory with the v14 Ar-
gonne potential (circles) is compared with the result obtained
including renormalization effects (squares).

In the calculations reported below, a Skyrme inter-
action (Sly4 parametrization, with mk ≈ 0.7m [17]),
was solely used to determine the properties of the bare
single-particle states and the collective vibrations in the
particle-hole channel. On the other hand, in the particle-
particle (pairing) channel the interactions used were the
bare nucleon-nucleon v14 Argonne potential and the ex-
change of collective vibrations.

As seen from fig. 3, Hartree-Fock theory is not able to
account for the experimental quasiparticle energies of the
low-lying states. Diagonalizing the Argonne v14 nucleon-
nucleon potential in the Hartree-Fock basis, within the
framework of the generalized Bogoliubov-Valatin approx-
imation including scattering states up to 800 MeV above
the Fermi energy (to achieve convergence) in a spheri-
cal box of radius equal to 15 fm, one obtains the state-
dependent pairing gap shown in fig. 4 (labelled v14). The

Table 1. The energy and reduced E2 transition strength of the
low-lying 2+ state, calculated according to different theoretical
models, are compared to the experimental values [27].

�ω2+ (MeV) B(E2 ↑) (e2 fm4)
RPA (Gogny) 2.9 660
RPA (Sly4) 1.5 890

RPA + renorm. [23] 0.9 2150
Exp. 1.2 2030

resulting pairing gap (average value for levels around the
Fermi energy) accounts for about half of the empirical
pairing gap value (≈ 1.4 MeV) obtained from the odd-
even mass difference [18]. In keeping with this result, the
quasiparticle spectrum (cf. fig. 3), although being slightly
closer to the experimental findings than that predicted
by Hartree-Fock theory, displays large discrepancies with
observations. The situation is rather similar concerning
the low-lying quadrupole vibration of 120Sn calculated in
the QRPA with standard effective nucleon-nucleon inter-
actions like Gogny or Skyrme forces. While energy is pre-
dicted too high, which may not be too important, the
B(E2) value is a factor 2-3 too small (cf. table 1), a result
which calls for a better theory.

In fact, renormalizing the energy and the transition
strength of the 2+ phonon, following Nuclear Field The-
ory [20,21], that is, considering the couplings of the type
depicted in fig. 2 (cf. also ref. [22] and references therein),
one obtains an increase of the B(E2) transition proba-
bility which brings theory essentially in agreement with
experiment (cf. table 1) [23]. The most important pro-
cesses which renormalize the energy of the phonon are
shown in figs. 2(a) and (b). While these two contribu-
tions tend to cancel each other in a normal system, this is
not the case in a superfluid nucleus. In fact the phonons
are calculated in a Bogoliubov-Valatin-quasiparticle basis,
and while the cancellation is strong in the particle-hole
channel, the opposite is true in the particle-particle chan-
nel [25]. Other graphs which are also of fourth order in
the particle-vibration coupling vertex, but contain inter-
mediate states with more than four quasiparticle states,
lead to very small contributions. This is because these
terms not only involve larger denominators, but also, due
to their higher degree of complexity, give rise to contribu-
tions with “random” signs which tend to cancel each other.
In keeping with the above discussion, the most important
processes renormalizing the B(E2) transition probability
are those shown in figs. 2(c), (d), (e) and (f).

We have also calculated the static quadrupole moment
Q of the 2+ state, including the contributions from the
processes shown in fig. 6.27 of ref. [14], considering also
self-energy effects [26]. The resulting value of Q is rather
small (8 e fm2), in agreement with the experimental find-
ings (10± 10 e fm2, or −5± 10 e fm2 [27,28]).

Because in the above calculations we have included
only a partial set (although the most important for the
physics under discussion) of the NFT graphs needed
to provide a completely consistent description of single-
particle and collective-vibration renormalizations, the
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mixing of spurious states with the physical states has to
be contemplated. Although it is difficult to give a precise
estimate of the error induced by such undesired couplings,
30% effects have been found in the calculation of the en-
ergy of the one-phonon state [29].

Making use of phonons which account for the exper-
imental findings, the normal and abnormal self-energies
were calculated, and eq. (1) solved. The average value
of the resulting state-dependent pairing gap of 120Sn is
now close to the value ∆exp = 1.4 MeV derived from the
odd-even mass difference (cf. fig. 4). In fig. 3 we show
the energy of the peaks carrying the largest quasiparti-
cle strength, for the orbitals around the Fermi energy,
which provide an overall account of the lowest quasiparti-
cle states measured in the odd systems 119Sn and 121Sn.

One can conclude that mean-field theory and bare
nucleon-nucleon potentials reproduce neither the experi-
mental transition strengths nor the pairing gaps, let alone
the density of quasiparticle states close to the ground
state. Dressing the single-particle motion, the correlated
particle-hole excitations of mean field and the nucleon-
nucleon interaction with collective surface vibrations,
brings theory in overall agreeement with experiment. In
particular, about half of the pairing gap arises from the
long-range component of the pairing interaction associ-
ated with the exchange of collective vibrations. To further
clarify the interdependence of single-particle and collective
degrees of freedom, future studies should, for example,
concentrate on the role this interdependence has on the
nuclear masses. In particular, whether the explicit, sim-
plified, inclusion of ground-state correlations and of the
induced pairing interaction can reduce the present r.m.s.
error of 0.674 MeV with which one of the best presently
available Hartree-Fock mass formula [30] is able to repro-
duce the experimental findings.
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